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SUPPLEMENTARY SECTION 1. EXPERIMENTAL METHODS 

A. Materials. Thulium(III) acetate hydrate (99.9%),  ytterbium(III) acetate tetrahydrate (99.9%), 

yttrium(III) acetate hydrate (99.9%), gadolinium(III) acetate hydrate (99.9%), oleic acid (technical 

grade, 90%), ammonium fluoride (99.99+%), sodium hydroxide (99.9%) and ethanol (99%) were 

purchased from Sigma-Aldrich. All chemicals were used as received, without any further purification. 

 

B. Synthesis of core NaYF4: 30 mol % Yb3+, 0.2 mol % Tm3+ nanoparticles (NaYF4:Yb3+/Tm3+). 

Y(CH3CO2)3 * xH2O (1.396mmol), (YbCH3CO2)3 * xH2O(0.6mmol), and Tm(CH3CO2)3 * 

xH2O(0.004mmol) were added to a 100-mL flask containing 12 mL of oleic acid and 30 mL of 1-

octadecene. The mixture was heated to 130oC for 30 min under vacuum to form the lanthanide-oleate 

complexes and remove water. Then, the solution was cooled down to 50oC under argon. Afterwards, 

10 mL of a methanol solution containing 8 mmol of NH4F and 5mmol of NaOH was injected into the 

solution and held at this temperature for 30 minutes. Then, after the evaporation of methanol, the 

solution was heated to 300oC under argon for 90 minutes and cooled down to room temperature. The 

resulting nanoparticles were precipitated by the addition of ethanol, and collected by centrifugation 

at 6,000 rpm for 7 minutes. This wash was repeated several times, before redispersing the final 

product in 10 mL of hexanes. 

 

C. Synthesis of core-shell NaYF4: 30 mol % Yb3+, 0.2 mol % Tm3+ @ NaYF4 upconversion 

nanoparticles (UCNPs) (NaYF4:Yb3+/Tm3+@NaYF4). Y(CH3CO2)3 * xH2O (1.8mmol) was added 

to a 100-mL flask containing 12mL of oleic acid and 30 mL of 1-octadecene. The mixture was 

heated to 130oC for 30 min under vacuum to form the lanthanide-oleate complexes and remove water. 

The solution was cooled down to 80oC under argon, and the hexane dispersion of β-NaYF4:Yb/Tm 

(30/0.2%) was injected into the solution. The resulting reaction mixture was heated to 90oC to 

remove hexanes. Then, the solution was cooled down to 50oC under argon. Afterwards, 10 mL of a 
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methanol solution containing 7.2 mmol of NH4F and 4.5 mmol of NaOH was injected into the 

solution and held at this temperature for 30 minutes. Then, after the evaporation of methanol, the 

solution was heated to 300oC under argon for 90 minutes and cooled down to room temperature. The 

resulting nanoparticles were precipitated by the addition of ethanol, and collected by centrifugation 

at 6,000 rpm for 7 minutes. This wash was repeated several times, before redispersing the final 

product in 10 mL of hexanes. 

 

D. Synthesis of NaYF4: 20 mol % Yb3+, 0.2 mol % Tm3+, 30 mol % Gd3+ upconversion 

nanorods (UCNRs). UCNRs were synthesized based on a previous report.1 Briefly, 0.3 g NaOH was 

added to 1.5 mL DI water and mixed with 5 mL of ethanol and 5 mL of oleic acid under stirring. To 

the resulting mixture, 1 mL of NH4F (2 M) and 2 mL of RECl3 (0.2 M, RE= Y, Yb, Gd, and Tm) 

was added. The solution was transferred into a 20-mL Teflon‐lined autoclave and heated at 200ºC for 

2 h. The obtained UCNPs were collected by centrifugation at 3,500g for 5 mins, washed with water 

and ethanol several times and re‐dispersed in cyclohexane for storage.  

 

E. Characterization of upconversion nanomaterials. Fluorescence spectra were recorded to 

confirm the emission profile on a Varian Cary Eclipse fluorescence spectrophotometer using an 

external NIR 980-nm laser source (High Power Fiber Coupled Diode Laser System; Changchun New 

Industries, FC-W-980) as an excitation light source. Transmission electron microscopy (TEM) 

images were obtained on a Phillips CM12 operating at 80kV. Samples were prepared by dropcasting 

a 1 wt% solution of the as-synthesized UCNPs onto carbon-coated copper TEM grids. Powder X-ray 

diffraction (PXRD) patterns were recorded on a Rigaku Ultima IV X-ray diffractometer, using Cu Kα 

radiation (λ = 1.5406 Å). A graphite monochromator was used and the generator power settings were 

set to 40 kV and 44 mA. Data were collected between 2θ of 10-70° with a step size of 0.02° and a 

scan speed of 1.5 deg/min. Time-resolved upconversion fluorescence of UCNP were collected on a  
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Edinburgh  FLS920  fluorescence  spectrometer  with  a  external  continuous  980-nm  NIR  LED  

laser diode (1.5 W), which was coupled with a chopper to modulate the excitation into pulse mode. 

 

F. Generation of PLGA-UCNP hybrid scaffolds. Ester-terminated poly (lactic-co-glycolic acid) 

(85:15 PLGA, 0.55-0.75 IV; Durect Corporation) was dissolved in chloroform to make a ~9 wt% 

solution. A stock solution of UCNPs (or UCNRs) (~150 mg/mL) was made by dispersing in 

chloroform, followed by sonication. Pre-mixtures of PLGA-UCNP were made by adding dilutions of 

the PLGA solution and UCNP solution in 0.6-mL Eppendorf tubes and vortexing. Each PLGA-

UCNP aliquot (125 µL) contained a total of about 5.5 mg of PLGA and 0-15 mg of UCNPs (or 

UCNRs). Circular glass coverslips (Ø12mm) were rinsed with ethanol and the surface was entirely 

covered with the PLGA-UCNP aliquot. Thin films were generated by spin-coating at 3500 RPM for 

30 seconds. The amount of UCNP loaded within the scaffold was determined by measuring the mass 

of the glass coverslip before and after coating. The substrates were sterilized in a culture hood by 

rinsing with 70% ethanol for 5 mins, followed by UV treatment for 2 hrs, and rinsed with sterile 

1xPBS prior to neuronal culture. 

 

G. Neuronal culture. Mouse hippocampal culture was prepared as described elsewhere.2, 3 Briefly, 

primary hippocampal neurons were isolated from P0 pups of wild-type (WT) mice and dissociated 

by papain digestion. The sterilized substrates prepared earlier were coated with Matrigel and seeded 

with the dissociated neurons. The neurons were cultured in vitro for 14-15 days in MEM (Gibco) 

supplemented with B27 (Gibco), glucose, transferrin, fetal bovine serum and Ara-C (Sigma). All 

animal experiments were performed under the approval of Rutgers Institutional Animal Care and 

Use Committee. 

 



       

  S6 
 

H. Lentivirus packaging and infection of neuronal cultures. The packaging of lentiviruses and the 

infection of neurons with lentiviruses have been described.3, 4 Briefly, the ChIEF-Channelrhodopsin-

2 (ChR2)-tdTomato lentiviral expression vector and three helper plasmids, the pRSV-REV, 

pMDLg/pRRE and vesicular stomatitis virus G protein (VSVG) were co-transfected into human 

embryonic kidney (HEK) 293T cells (ATCC, VA), at 6, 2, 2 and 2 μg of DNA per 25 cm2 culture 

area respectively. Supernatant with viruses was collected 48 hours after transfection and was 

concentrated by ultracentrifugation (35,000 rpm for 2 hours). Hippocampal neuronal cultures were 

infected at 4-5 DIV (days in vitro) and used for electrophysiological analysis at 14-15 DIV. All steps 

were performed under level II biosafety conditions. The efficient expression of ChR2 was confirmed 

using confocal microscopy (Zeiss LSM 700). 

 

I. Optical stimulation of neuronal cultures. Blue light (470 nm, 250 mW) was generated using 

Thorlabs collimated LED4C24. The LED was directly attached with an Olympus BX51 microscope 

via a C-mount adaptor. The light intensity could be adjusted via DC4100 driver, which was 

synchronized by Clampex10 via a TTL. NIR light (980 nm, 1-2 W) was delivered using an external 

laser source (High Power Fiber Coupled Diode Laser System; Changchun New Industries, FC-W-

980). Where train stimuli were desired, the device was externally triggered by Clampex 10 via a TTL. 

The NIR light was guided by a multimode patch cable (Ø400 µm; Thorlabs, Cat. #M79L01) 

comprising of a ceramic ferrule end integrated with a fiber optic cannula (Ø2.5 mm, 20 mm fiber 

length; Thorlabs, Cat. #CFMC14L20). The fiber optic was positioned ~100 µm from the recorded 

cell.  

 

J. Electrophysiology. Electrophysiology was performed as described previously.3, 5 Briefly, the 

patch pipettes were pulled from borosilicate glass capillary tubes (Warner Instruments, Cat. #64-

0793) using a PC-10 pipette puller (Narishige). The resistance of pipettes filled with intracellular 
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solution varied between 4-5 MOhm. After formation of the whole-cell configuration and 

equilibration of the intracellular pipette solution, the series resistance was adjusted to 8-10 MOhm. 

Neuronal activities were monitored with a Multiclamp 700B amplifier (Molecular Devices). Data 

were acquired using Clampex 10 data acquisition software and analyzed using Clampfit (Molecular 

devices). The whole-cell pipette solution contained (in mM): 123 K-gluconate, 10 KCl, 1 MgCl2, 10 

HEPES, 1 EGTA, 0.1 CaCl2, 1 K2ATP, 0.2 Na4GTP, and 4 glucose, pH adjusted to 7.2 with KOH. 

The bath solution contained (in mM): NaCl 140, KCl 5, CaCl2 2, MgCl2 2, HEPES 10, and glucose 

10, pH 7.4. Synaptic responses were blocked using (in µM): CNQX 20, APV 50, and Picrotoxin 20. 

Voltage traces to record APs were acquired using 470-nm light and 980-nm light. Whole-cell current 

responses were collected under a holding potential of -60 mV. 

 

K. Scanning electron microscopy. At 14 DIV, the cultured substrates were fixed with 4% 

formaldehyde for 15 mins, followed by ethanol drying and critical pointing drying. The dehydrated 

samples were then gold sputtered (20-nm coating) and imaged using the Zeiss Sigma field emission 

scanning electron microscope (FE-SEM). Substrates that were not used for cell culture were directly 

gold sputtered and imaged using the FE-SEM. 
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SUPPLEMENTARY FIGURES 

 
 
Figure S1. Absorbance spectrum of UCNPs. The absorbance spectrum of the UCNPs shows a 
peak value at about ~980 nm, corresponding to the 2F7/2  2F5/2 transition of Yb3+ ions. 
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Figure S2. Measuring luminescence of PLGA-UCNP hybrid scaffolds under near-infrared light 
(NIR) excitation. (a) Picture of a PLGA-UCNP hybrid scaffold coated on a glass coverslip, inserted 
in a standard quartz cuvette. (b) Fluorometer setup to measure luminescence spectra from PLGA-
UCNP hybrid scaffold. (c) Luminescence spectra of PLGA and PLGA-UCNP under NIR light 
excitation at 980 nm.  
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Figure S3. Relationship between NIR light intensity and emitted blue light. (a) Luminescence 
spectra of PLGA-UCNP hybrid scaffolds under varying 980-nm NIR light excitation power. (b) 
Emitted blue light dependence on NIR excitation intensity plotted on a log-log scale, showing a 
linear slope.  
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Figure S4. Scanning electron microscopy (SEM) of hybrid scaffolds with varying concentration 
of UCNPs. SEM images depicting the surface of hybrid scaffolds containing varying concentration 
of UCNPs ranging from 2.1 µg/mm2 to 8.3 µg/mm2. Scale bars: 500 nm. 
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Figure S5. Atomic force microscopy (AFM) images of hybrid scaffolds with varying 
concentration of UCNPs. AFM images depicting the height profile and thickness of hybrid 
scaffolds containing varying concentration of UCNPs ranging from 2.1 µg/mm2 to 8.3 µg/mm2. 
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Figure S6. UCNP loading-dependent emission output from hybrid scaffolds. Integrated area of 
the 475-nm emission peak of PLGA-UCNP hybrid scaffolds with varying UCNP loading, under 
illumination with 980-nm NIR light excitation power ranging from 0 to 1 W.  
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Figure S7. Large-scale scanning electron microscopy (SEM) image of cultured ChR2-infected 
neurons. SEM image depicts the ChR2-infected hippocampal neurons (pseudocolored red for 
contrast) grown on the hybrid polymer-UCNP substrate at 14 days in vitro. The large-scale image 
shows the attachment and spreading of neurons on the biocompatible surface. Scale bars: 20 µm.  
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Figure S8. Biocompatibility of hybrid scaffolds. The percentage of viable cells was determined 
using the PresetoBlue Cell Viability assay for neurons cultured on various substrates after one week 
of culture. The fluorescence at 590 nm (with 560 nm excitation) was measured and normalized to the 
control glass substrates. 
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Figure S9. Experimental setup for optical stimulation of neuronal cultures. (a) Microscope setup 
showing the arrangement of the optical fiber (to deliver 980-nm light), the glass electrode for whole-
cell patch clamp recordings and the cultured substrates. (b) Image depicting orientation of the optical 
fiber and glass electrode through the microscope lens. (c) Image depicting optical illumination 
alignment using a red-colored guide light. 
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Figure S10. Fluorescence emission rise time of UCNPs. The emission was collected for 
fluorescence lifetime at 473 nm under 980-nm excitation, showing a rise time of about 310 µs. 
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Figure S11. Stimulation with Higher Frequency of 980-nm Light. Representative traces showing 
action potentials in a current-clamped hippocampal neuron evoked by 20 Hz train of light pulses 
from 980-nm light (right; 1 W, 3 ms pulse width). 
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Figure S12. Lack of NIR light response of ChR2-infected neurons cultured on PLGA 
substrates (w/o UCNPs). (a) Nominal inward current flow in voltage-clamped ChR2-infected 
hippocampal neurons exposed to 200 ms of 980-nm light (1 W). (b) Representative traces showing 
nerve impulses (i.e. action potentials) in a current-clamped hippocampal neuron evoked by 1 Hz train 
of light pulses from 470-nm light (left), but none for 980-nm light (right). This data demonstrates 
that the conventional channelrhodopsin-expressing neurons cannot be excited with 980-nm light.  
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Figure S13. Lack of NIR light response of non-infected neurons cultured on hybrid PLGA-
UCNP substrates. (a) Nominal inward current flow in voltage-clamped hippocampal neurons 
exposed to 200 ms of 980-nm light (1 W). (b) Representative trace shows the lack of nerve impulses 
induced in a current-clamped hippocampal neuron evoked by 1 Hz train of light pulses from 980-nm 
light. (c) Action potential trains evoked by a 1.0 pA/ms ramp current from a holding potential of -45 
mV. The presence of nerve impulses indicates that the neuron is viable and physiologically-active. 
This data demonstrates that hippocampal neurons cannot be excited with 980-nm light.    
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Figure S14. Characterization of blue-emitting upconversion nanorods (UCNRs). (a) 
Upconversion emission spectrum of the NaYF4:Yb3+/Tm3+/Gd3+ (20/0.2/30 mol%) UCNRs in hexane 
solution under laser excitation at 980 nm. (b) SEM image of UCNR. Scale bar: 200 nm. (c) TEM 
image of UCNR. Scale bar: 20 nm. Both SEM and TEM show a UCNR length of about 200-nm and 
width of 50-nm. 
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Figure S15. Encapsulation of UCNRs within PLGA films and culture of hippocampal neurons. 
(a) Scanning electron microscopy (SEM) image shows the distribution of the UCNRs within the 
PLGA film. Scale bar: 1 µm (bottom), 200 nm (inset). (b) SEM image of a hippocampal neuron 
(pseudocolored red for contrast) cultured on the polymer-UCNR films at 14 DIV. Scale bar: 20 µm 
(left), 1 µm (right). 
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Figure S16. Inconsistent NIR-light response of ChR2-expressing neurons grown on PLGA-
UCNR substrates. (a) Inward current flow in voltage-clamped ChR2-infected hippocampal neuron 
evoked by 470-nm light (left; 2.5 mW) and 980-nm light (right; 2 W). In comparison, a significant 
difference in the dynamics of current flow is evident in the two traces. (b) Representative traces in a 
current-clamped ChR2-infected hippocampal neuron evoked by 1 Hz 980-nm light (2 W, 50 ms 
pulse duration). At this lower frequency, nerve impulses were generated. (c) Representative traces in 
a current-clamped ChR2-infected hippocampal neuron evoked by 5 Hz 980-nm light (2 W, 50 ms 
pulse duration). At this higher frequency, there were inconsistent nerve impulses induced, wherein 
misfiring was observed (indicated with red arrow) upon NIR irradiation. 
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Figure S17. Generation of spikelets using longer NIR pulse duration. Representative trace and 
magnified action potential of a current-clamped ChR2-infected hippocampal neuron cultured on 
PLGA-UCNP hybrid scaffolds evoked by 1 Hz 980-nm light (1 W, 50 ms pulse duration).  
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Figure S18. Comparison of UCNP- and UCNR-embedded PLGA films. SEM images depicting 
the surface of hybrid scaffolds containing UCNPs (left) or UCNRs (right). UCNPs show better 
packing and distribution throughout the PLGA film, compared to UCNRs which have varying 
orientations. Scale bars: 200 nm.  
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Table 1. UCNP Loading within PLGA-UCNP hybrid scaffolds. 
 

Mass of UCNP Loaded in 
PLGA Solution Before 

Spin-Coating (mg) 

Total Mass of UCNP 
Embedded Within 
PLGA Films (mg) 

Mass of UCNP in 
PLGA Films Per 

Square Area (µg/mm2) 

5 0.24 2.1 
10 0.47 4.2 
15 0.94 8.3 

 
 
 


